
@2004-2006 Backbase B.V., All Rights Reserved Page 1 of 8

The Travel Starter Kit

1. Introduction

The Travel Starter Kit is an example of how to build a vacation booking

application for travel agencies using BXML. The application provides filtering and
sorting of flights, hotels and cars. It allows the user to specify his or her

preferences, and hides the options that do not match the preferences. Flights,

hotels or cars that are selected are added to a shopping cart. The Travel Starter
Kit demonstrates how to use custom JavaScript to embellish BXML, and how to

visually enhance applications using effects.

@2004-2006 Backbase B.V., All Rights Reserved Page 2 of 8

This document is designed to provide you with an overview of the concepts that

are used to implement the starter kit; it is not its intention to describe all the
functionality of the application, or to explain in detail how the application is built.

It is recommended to consult the Manual or BXML Reference PDF for more
detailed information about the BXML code used in the starter kit.

2. The core structure of the Travel Starter Kit

The application can be divided in three functional areas; “My Trip”, the Main
Application Area (for selecting flights, hotels, and cars), and “My Search”.

2.1 My Trip

“My Trip” is located in the upper-left hand corner of the application. This is
basically a shopping cart, to which items such as flights, hotels and cars can be

added or removed. The shopping cart keeps a running total of the cost of the trip,

according to its contents.

2.2 Main Application Area (Tabbed Content)

The main area of the application is tabbed interface with tabs for Flights, Hotels,

and Cars. The tabs contain the items that can be selected for the trip. On
application startup, only the contents of the initially selected tab are loaded; the

contents of the tabs that are not initially displayed are not loaded to reduce

initialization time of the application. When a tab is selected for the first time, the
contents are dynamically loaded. You will see a loading message when the

contents are being loaded for the first time. The message will not appear when a
tab is selected again. Similarly, additional information about an item is only

added to the application when requested.

The content of the tabs is generated using PHP; there is one file for each tab.
Each PHP file generates an XML file containing BXML. Items that can be selected

for the trip are listed in the file. Certain properties, such as the price of the items

are generated randomly, so some parts of the contents of the tabs are different
every time the application is reloaded.

@2004-2006 Backbase B.V., All Rights Reserved Page 3 of 8

2.3 My Search

My Search, located under My Trip, allows the user to specify preferences, so the

items can be filtered and items displayed according to the preferences. This
application offers two ways of changing preferences: by changing a slider value

the user can, for example, specify the maximum price he or she wants to spend
on a certain part of the trip, or by checking checkboxes that allow the showing or

hiding of items that have a particular property value. For example the user can
choose to not list hotels with a one star rating. Since filters for flights are not the

same as those for hotels, My Search changes when a different tab is selected.

3. Application Architecture

The Travel starter kit uses most of the key BXML concepts, such as include files

and behaviors. This chapter will shortly discuss the most important concepts for
the starter kit.

3.1 Include files

A key technique used for keeping functionally distinct modules separate from

each other is the use of include files. Include files are well-formed XML files which
contain both BXML and regular XHTML. They can be small and simple, merely

containing a few behavioral instructions or a small module such as a shopping
cart. They can also be very large and can contain multiple nested include files.

This starter kit uses 5 includes:

<s:include b:url="behaviors/checkout.xml" />
<s:include b:url="behaviors/filter.xml" />
<s:include b:url="behaviors/result.xml" />
<s:include b:url="behaviors/tab.xml" />
<s:include b:url="behaviors/sort.xml" />

The included files contain behaviors for distinct parts of the application.

3.2 Decks

The deck control is one of the most important concepts in creating single page

interfaces. A deck only shows the selected element inside the deck; all other
elements are hidden. There are two decks in the Travel starter kit, one containing

the items that can be selected for the trip, and the other containing the form
elements that take can be used for filtering the items that are displayed in the

first deck. Both decks contain b:buffer tags that are used to load content on

request. The b:buffer tag has a b:url attribute that points to the file that is

loaded when the b:buffer is selected.

<b:deck id="BBTRAVEL-Search-results">
 <b:buffer b:url="_result/flights.php" id="BBTRAVEL -Flight-results" />
 <b:buffer b:url="_result/hotels.php" id="BBTRAVEL- Hotel-results" />
 <b:buffer b:url="_result/cars.php" id="BBTRAVEL-Ca r-results" />
</b:deck>

@2004-2006 Backbase B.V., All Rights Reserved Page 4 of 8

3.3 Behaviors

A behavior is a generic construct used to encapsulate functionality, promoting

reuse and separating the structure of the document from the behavior. You can
use behaviors to:

• Define the visual representation of an element when in one of its base

states selected or deselected (using the s:state tag)

• Define the instructions that are executed when an event takes place by

using the s:event tag to define an event handler

For more information on behaviors, see section 5 Adding effects.

4. Using JavaScript to enhance BXML

BXML offers a rich library of functionality using XPath and the DOM. It is also

completely interoperable with web standards, which means you can still use

JavaScript to add custom functionality, and make use of existing JavaScript
functions in BXML applications. This section describes a situation where using

JavaScript provides an appropriate solution.

The Outgoing arrival time slider, in the Flights section of the application, is one
element in the application that uses JavaScript. The slider can be used to filter

the items shown in the Flights tab, and while sliding, a tooltip shows the currently
selected value.

Let's look at the slider code (_filter/_filter_flights.xml – line 36):

<b:slider
 b:behavior="filter-slider"
 w:filtertype="upper"
 w:prop="outgoing_arrival"
 w:section="Flights"
 w:postfix="H"
 b:value="2400"
 b:gfxset="WHP"
 b:ori="hor"
 b:start="0"
 b:end="2400"
 b:snap="true"
 b:step="100">

 <s:event b:on="showtooltip">
 <s:task
 b:action="set"
 b:target="id('slidervalue')/text()"
 b:value="{getTooltipValue(string(@b:value))}" />
 <s:task b:action="show" b:target="id('slidervalue ')" />
 <s:task
 b:action="position"
 b:target="id('slidervalue')"
 b:type="place"
 b:position="at-pointer" />
 </s:event>
</b:slider>

This slider has a behavior (filter-slider), a default value of 2400 , a minimum

value of 0, and a maximum value of 2400 . Steps are defined at 100 , meaning that

the slider is divided in 24 values, representing the hours of a day. Then the

showtooltip event is defined. This event overrides the showtooltip event that is

defined in the filter-slider behavior. This is done because the format of the

tooltip content is different from the default behavior. The default behavior would

be to just to print the current value of the slider, which is the value of the

b:value attribute. This attribute contains numbers (0 - 2400). The tooltip, on the

@2004-2006 Backbase B.V., All Rights Reserved Page 5 of 8

other hand, shows a formatted time; 00:00 – 24:00. A transformation therefore

has to be made to show the right format.

The right format is a four digit number, so values less than 1000 need to be
adapted. This comes down to adding a 0 in front of the value when there are

three digits to account for values between 100 and 900. Since the value can only
be a multiple of 100, starting at 0, the only exception is 0. Since it is 0, it can just

be substituted by 0000.

When the amount of digits is correct, a colon is added for final formatting

purposes. You can do this using BXML and XPath only. Focusing purely on the
formatting and setting of the tooltip content, it could be implemented as follows:

<s:event b:on="example-showtooltip">

 <!-- create variable, because the attribute value should not be changed -->
 <s:variable b:name="time" b:select="@b:value" />
 <!-- if there is only one digit, set to '0000' -- >
 <s:task
 b:test="string-length(string($time)) = 1"
 b:action="assign"
 b:target="$time"
 b:select="'0000'" />
 <!-- if there are three digits, add one more digi ts -->
 <s:task
 b:test="string-length(string($time)) = 3"
 b:action="assign"
 b:target="$time"
 b:select="concat('0',$time)" />
 <!-- Add the colon -->
 <s:task
 b:action="assign"
 b:target="$time"
 b:select="concat(substring($time, 1, 2) , ':', substring($time, 3))" />
 <!-- set tooltip value -->
 <s:task b:action="set" b:target="id('slidervalue')/text()" b:value="{$time}"

/>
 <!-- etc... -->

</s:event>

Although the code works perfectly well, and is correct and fast, you can also use

JavaScript to reach the same objective. As you can see, the showtooltip event

that is used in the slider is much smaller. In fact, the five lines in the example do

the same as the first line of BXML code in the settooltip event:

<s:task
 b:action="set"
 b:target="id('slidervalue')/text()"
 b:value="{getTooltipValue(string(@b:value))}" />

This is because JavaScript does the formatting. The set command is used to set

the text of the slider. The value that is used to set the text is specified in the

b:value attribute. The {getTooltipValue(string(@b:value))} query consists

of the following:

• @b:value - a BXML attribute

• string() – an XPath function

• getTooltipValue() - a JavaScript function

• {} - curly brackets

@2004-2006 Backbase B.V., All Rights Reserved Page 6 of 8

getTooltipValue() is defined in the file js/general.js:

function getTooltipValue(aValue) {
 var sValue = aValue[0];
 if(sValue.length == 1) sValue = '0000';
 else if(sValue.length == 3) sValue = '0' + sValue;
 return sValue.substr(0,2) + ':' + sValue.substr(2) ;
}

The first line of getTooltipValue() takes the first value of an array. This means

that the input of the function is expected to be an array. The XPath query returns

a string, so why expect an array? It is important to note that XPath queries
always return a sequence. A sequence can contain multiple strings, integers,

Booleans, and objects (nodes). In BXML, this sequence is stored in an array. So
even when there is only one result, the result is always be in an array.

The argument that is given to the getTooltipValue() is the result of the XPath

query string(@b:value) . The result of that query is the string value of the

slider. The string function is necessary, since it passes the object (the attribute

itself) if a @b:value is specified.

The curly brackets indicate that the value requires parsing. If the curly brackets
were omitted, the contents would not be evaluated as an XPath query, but would

instead be interpreted as a string.

Although the example is a basic one - there is only a small change in formatting

and the logic is kept simple – it serves as an example that you can extrapolate to

create more complicated functions, and demonstrates how you can use JavaScript

to do similar transformations or advanced calculations that can help you keep
your code clean and compact.

5. Adding effects

Adding effects to a web page gives the application a more interactive feel than a
visually static page. You can add effects to make an application look cool, or just

to add a bit of style. Effects are often relatively small and unobtrusive, yet
nevertheless add significantly to the usability of the application. Not having them

would reduce the overall user-experience of the application.

You can create several kinds of visual effects using BXML: elements can be

moved or resized to change the layout of a page, background, text or border
colors can be changed to draw attention, and opacity can be changed to fade in

or fade out elements. There are several elements in the starter kit with visual
enhancements, one of which, the Book button, will be discussed in this section.

The Book button uses a mouseover effect (similar to an effect used in the tabs)

that:

• Indicate when the button is pressed

• Fade color fade when the mouse enter/leave the button

The button's behavior that contains the code that creates these effects is located
in the behaviors/checkout.xml:

<s:behavior b:name="BBT-Checkout-Button">
 <s:state
 b:on="deselect"
 b:normal="BBT-Checkout-Button"
 b:press="BBT-Checkout-Button BBT-Checkout-Button- press" />

@2004-2006 Backbase B.V., All Rights Reserved Page 7 of 8

 <s:initatt b:textselect="false" />
 <s:event b:on="mouseenter">
 <s:fxstyle
 b:color="#FCB537"
 b:background-color="#FFFFFF"
 b:time="200" />
 </s:event>
 <s:event b:on="mouseleave">
 <s:fxstyle
 b:color="#000000"
 b:background-color="#FCB537"
 b:time="200" />
 </s:event>
</s:behavior>

There is one s:state tag, two s:event tags, and an s:initatt tag (the later is

not part of either effect ─ it is used merely to add initial attributes to the element

that uses the behaviour ─ and so will not be discussed.

5.1 Using s:state

The s:state tag is used to specify which style classes an element uses,

depending on its state. An element can be in one of the two basic states select

or deselect . The s:state tag has a b:on attribute to specify for which state you

are defining which classes to use. Because there is no need to change the state of

the button, only the deselect (the default state of an element) needs to be

defined. The b:normal attribute contains the classes that are assigned to the

element in its default state. The b:press attribute contains the classes that are

used when the element is pressed (a mouse button is pressed down over the

element).

You can create effects using this concept of changing an element’s classes based
on its state. Take, for example, the button used in the application. A background

image has been attached to the element to make it look like a button. The image

has a 3D look that is created by applying shadows and highlights. When you
press a button, the shadows and highlights change. The button looks like it's

changing the highlights, but in fact, a different image with different highlights is
attached to the button, depending on the state of the mouse (pressed or not).

The following image is used for the normal state of the button, as defined in BBT-

Checkout-Button . The shadow is on the bottom side.

The following image is used for the pressed state of the button, as defined in BBT-

Checkout-Button-press . The shadow is on the top side.

Furthermore, as well as the change of background image, padding is also applied

to move the text a few pixels to make it look like the text is printed on the
surface of the button. As the surface seems to move, the text on the surface also

moves.

Changing style properties by setting different classes is a good way to create
certain effects. The different style definitions are applied immediately when a

@2004-2006 Backbase B.V., All Rights Reserved Page 8 of 8

class has been changed, removed, or added, making an application highly-

responsive leading to a richer user experience.

5.2 Animated effects – s:fxstyle

Although in many situations changing classes using s:state is perfectly

adequate, sometimes a more subtle approach is required using a transition
effects of one visual state to another.

The Book button and the tabs both use a background color fade effect when the

mouse is hovered over them. For obvious reasons, the mouseenter and

mouseleave events are used for executing the effects. The effects themselves are

created using the s:fxstyle tag. The s:fxstyle tag has attributes that

correspond with CSS style properties that you can set. In the Book button

example, b:color and b:background-color are used. The button has an orange

(#FCB537) surface, which is specified in the CSS class of the button. When the

mouse enters the button, the mouseenter event is executed, which contains the

following line:

<s:fxstyle b:color="#FCB537" b:background-color="#F FFFFF" b:time="200" />

This would have the same end result as using s:setstyle with the same

attributes. However, using this tag, the changes are made gradually. Initially, the

button text color is black. The b:color attribute is set to a hexadecimal value that

corresponds with the color orange. Thus, when a mouse enters the button, the

text color will gradually change to orange. A similar transition is applied to the
background color. Where the background color initially was orange, the new color

will be white (#FFFFFF). The b:time attribute specifies how many milliseconds

the transition should last. Thus, when a mouse enters the button, it will take 200
milliseconds for the color and background color to be changed to orange and

white respectively. This would happen in parallel, since all attributes on the same

s:fxstyle tag are changed at the same time. If a situation asks for one

transition to be finished before the next starts, a second s:fxstyle tag can be

used. Of course, the mouseleave event will do the transition the other way

around, so the button will return to its original state.

Note: For more information about the many properties that can be animated

using s:fxstyle, see the BXML Reference PDF.

6 Conclusion

This starter kit focussed on demonstrating two features of BXML that can make a

significant difference to your web applications: you can use existing JavaScript
functionality alongside BXML to create advanced applications (note also you can

use the s:script tag to add inline JavaScript), and you can enhance your

application with effects using the s:state and s:fxstyle tags.

This document is designed to give you an idea about what can be achieved with
JavaScript and visual effects by showing how the starter kit uses this

functionality, but is not a comprehensive guide to these subjects. For more
information, refer to the Manual, Reference, and other Starter Kit documentation.

If you have any questions, you can post them on the Backbase forum:
http://www.backbase.com/forum

